Sampling Based Approaches for Minimizing Regret in Uncertain Markov Decision Processes (MDPs)
نویسندگان
چکیده
Markov Decision Processes (MDPs) are an effective model to represent decision processes in the presence of transitional uncertainty and reward tradeoffs. However, due to the difficulty in exactly specifying the transition and reward functions in MDPs, researchers have proposed uncertain MDP models and robustness objectives in solving those models. Most approaches for computing robust policies have focused on the computation of maximin policies which maximize the value in the worst case amongst all realisations of uncertainty. Given the overly conservative nature of maximin policies, recent work has proposed minimax regret as an ideal alternative to the maximin objective for robust optimization. However, existing algorithms for handling minimax regret are restricted to models with uncertainty over rewards only and they are also limited in their scalability. Therefore, we provide a general model of uncertain MDPs that considers uncertainty over both transition and reward functions. Furthermore, we also consider dependence of the uncertainty across different states and decision epochs. We also provide a mixed integer linear program formulation for minimizing regret given a set of samples of the transition and reward functions in the uncertain MDP. In addition, we provide two myopic variants of regret, namely Cumulative Expected Myopic Regret (CEMR) and One Step Regret (OSR) that can be optimized in a scalable manner. Specifically, we provide dynamic programming and policy iteration based algorithms to optimize CEMR and OSR respectively. Finally, to demonstrate the effectiveness of our approaches, we provide comparisons on two benchmark problems from literature. We observe that optimizing the myopic variants of regret, OSR and CEMR are better than directly optimizing the regret.
منابع مشابه
Regret based Robust Solutions for Uncertain Markov Decision Processes
In this paper, we seek robust policies for uncertain Markov Decision Processes (MDPs). Most robust optimization approaches for these problems have focussed on the computation of maximin policies which maximize the value corresponding to the worst realization of the uncertainty. Recent work has proposed minimax regret as a suitable alternative to the maximin objective for robust optimization. Ho...
متن کاملA Geometric Traversal Algorithm for Reward-Uncertain MDPs
Markov decision processes (MDPs) are widely used in modeling decision making problems in stochastic environments. However, precise specification of the reward functions in MDPs is often very difficult. Recent approaches have focused on computing an optimal policy based on the minimax regret criterion for obtaining a robust policy under uncertainty in the reward function. One of the core tasks i...
متن کاملAccelerated decomposition techniques for large discounted Markov decision processes
Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...
متن کاملLearning Unknown Markov Decision Processes: A Thompson Sampling Approach
We consider the problem of learning an unknown Markov Decision Process (MDP) that is weakly communicating in the infinite horizon setting. We propose a Thompson Sampling-based reinforcement learning algorithm with dynamic episodes (TSDE). At the beginning of each episode, the algorithm generates a sample from the posterior distribution over the unknown model parameters. It then follows the opti...
متن کاملSolving Uncertain MDPs with Objectives that Are Separable over Instantiations of Model Uncertainty
Markov Decision Problems, MDPs offer an effective mechanism for planning under uncertainty. However, due to unavoidable uncertainty over models, it is difficult to obtain an exact specification of an MDP. We are interested in solving MDPs, where transition and reward functions are not exactly specified. Existing research has primarily focussed on computing infinite horizon stationary policies w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- J. Artif. Intell. Res.
دوره 59 شماره
صفحات -
تاریخ انتشار 2017